Read the Docs Template

Documentation
Release 1.0

Read the Docs

Feb 16, 2021

Contents

Getting started

nxxm features

nxxm key principles

3.1 Relaxing & flowing C++
3.2 Every project is a library
3.3 Don’t pay for what you don’t use
3.4 Opinionated but compromise-ready

Contents:

4.1 Builds by Conventions
Why 7 e e e e e
Because
Convention by example
Conventions Types
splittedlibs
samedirlibs,
toplevellibs

4.1.1

4.1.1.1

4.1.2
4.13

4.1.3.1
4.1.3.2
4133
4134
4135
4.1.3.6
4.1.3.7

4.1.4.1
4.1.4.2

4.2.1

4.2.1.1

4.3 GitHub.com Dependencies
4.4 Platform Dependencies Shorthands

4.2.1.1.1
42.1.1.2
42.1.13
42.1.14
42.1.1.5

headeronly libs

APPS e e e e e e e
test or examples

html 0.
Conventions are not enough
Override for one directory convention build
Tweak nxxm convention build
4.2 Dependencies Specification
.nxxm/deps syntax
gh-user/gh-repo
@ : tag or branch name
s : source dir disambiguation
x : directory to completely ignore
requires
platform[:target-platform]
platform vs GitHub.com

42.1.1.5.1

4.5

4.6

4.7

4.8

4.9

4.10

Upgrade YOUr USEIS . . . v v v v v v v v e e e e et e e e e e e e e e e e e e e 34

45.1 Installingupgrd e e e e e e e e e e 34
452 PublishingReleases e e 35
Passing-Ddefines e 35
Compile OPLiONS o e e e e e e e e e e 35
4.7.1 anxxm/opts[.target-platform] 35
GitHub.com & Github Enterprise Authentication it v .. 35
4.8.1 Createa.nxxm/authfile 35
Continous integration with GitHub actions 36
49.1 CreateaGithubsecret e 36
Environment variables e e e e e e e e e e e e 37
4.10.1 NXXM_HOME_DIR (dependencies & toolscache) 37
4.10.2 NXXM_DISTRO_JSON e e e e e e e e 37
4.10.3 NXXM_DISTRO_JSON_SHATL e e e e e 38

Read the Docs Template Documentation, Release 1.0

Easing C++ development, inciting code reuse and improving application end-users experience by simplifying software
updates.

Contents 1

Read the Docs Template Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting started

Download nxxm and clone the Get Started repository repository.

https://nxxm.github.io/#download
https://github.com/nxxm/get-started

Read the Docs Template Documentation, Release 1.0

4 Chapter 1. Getting started

CHAPTER 2

nxxm features

To discover all the marvellous features nxxm offers you can take a look on our https://nxxm.github.io/ website.
¢ nxxm makes it intuitive to build a C++ project
— Requires absolutely no build recipes
— Builds by conventions with nxxm .
e nxxm is a dependency manager for C++ which fetches and compile any C++ project hosted on GitHub.com .
* adds software upgrade support to your apps.

* WebAssembly Ready but not only.

https://nxxm.github.io/
https://github.com/

Read the Docs Template Documentation, Release 1.0

6 Chapter 2. nxxm features

CHAPTER 3

nxxm key principles

3.1 Relaxing & flowing C++

* Code scanning & conventions over build configuration
* 0 setup just coding
— Just select one environment from our Supported list or specify your own.

— nxxm.io will download & install the compiler and libraries automatically in an isolated sandbox.

3.2 Every project is a library

In a software project there are 2 kinds of entrypoints :
» Developers entrypoints for code reuse
* End-user entrypoints for application use

Therefore the nxxm tools always prepare out of any project, even if it consists of a single C++ header and implemen-
tation file : a library that might be reused and applications that might be shipped.

3.3 Don’t pay for what you don’t use

This is a core C++ design philosophy, and sadly the world of packages manager obliges you to take more than you
need.

By definition a package is a pack of alot of things, and a developer won’t need all of them.

nxxm allows you to do a fine-granular selection of your dependencies and pulls in your final application, thanks to
modern C++ compilers only the needed bits.

https://github.com/nxxm/polly/tree/master/

Read the Docs Template Documentation, Release 1.0

3.4 Opinionated but compromise-ready

While with nxxm you won’t need anymore to write build files, you can still customize the parts or all with
CMakeLists.txt.tpl files as we drive CMake internally.

We don’t encourage it though.

CMake is a really robust solution that we cherish, but in our opinion it is a too low-level tool in a modern demanding
C++ context.

8 Chapter 3. nxxm key principles

CHAPTER 4

Contents:

4.1 Builds by Conventions

4.1.1 Why ?

Why did we ever write makefiles ? CMakeLists.txt or configured IDE project settings ? And why can we stop ?
Andrew Koenig once coined FTSE, the Fundamental theorem of software engineering :
“We can solve any problem by introducing an extra level of indirection.”

Actually building application is an extremely complex problems, and the layers are almost infinite : linker, assembler,
compiler, frontend, build-system (e.g. make), meta-build-system (e.g. cmake) to quote only a few.

nxxm leverages all the fabulous work done in these layer to finally make building C++ a simple human task.

4.1.1.1 Because

* C++ code expresses enough what is an application entrypoint and what is reusable library code.
* No need to learn a new language to specify how to build.

* We are tired of specifying each single file that should be built.

4.1.2 Convention by example

Take the idea of building a game project. This game project will contain :
1. the game domain with the player characters, game menu and so on.
2. the game app itself

3. tools apps like game maps and texture editor.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

Read the Docs Template Documentation, Release 1.0

The directory could look like this :

4 DEMO

4 srC

4 game_classes

menu.cpp

menu.hpp

player.cpp

player.hpp
4 tools

common.cpp
common.hpp
map_editor.cpp
texture editor.cpp
game.cpp
f LICENSE
README.md

game.cpp has a main function each, therefore they are apps by convention.

The main function may look like :

main() {

std::cout << " " << std::endl;

The src/ folder is scanned by nxxm which notices that there are .ipp and .cpp that don’t have any entrypoint, therefore
it defaults to the library code (i.e. the game domain).

Finally fools/ isn’t quite a good name for library code, and there are map_editor.cpp and texture_editor.
cpp that both have main () functions. Which makes them app entrypoint. Therefore the apps convention kicks
in.

This apps convention allows to have supporting file aside, therefore common.cpp is linked to map_editor and tex-
ture_editor. The header common.hpp is accessible via #include "common.hpp" while the game_classes is ex-
ported on the compiler include dirs which makes them usable via #include <game_classes/x.hpp>.

nxxm will give the following summary:

10 Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

scanning project...

convention build summary

.cpp files : "src/game classes/menu.cpp" "src/game classes/player.cpp"”

Compiling "." for wasm-cxx17

Resulting in a bin folder like the following:

bin
game.exe // game.cpp

E demo.lib // game_classes *.cpp
tools

|: map_editor.exe // common.cpp, map_editor.cpp
texture_editor.exe // common.cpp, texture_editor.cpp

4.1.3 Conventions Types

First main convention : every project is a library. (c.f. Every project is a library).

Out of each git repositories passed to the nxxm program one library is produced.

Hint: All the conventions can be mixed and don’t need to be declared beforehand, they are getting detected.

Hint: While often unneeded due to the conventions mentioned below it is possible to specify or reduce the scope of
a library within a project with nxxm -s library-diror{ "s" : "library-dir" }.

4.1.3.1 splitted libs

i— include

(continues on next page)

4.1. Builds by Conventions 11

Read the Docs Template Documentation, Release 1.0

(continued from previous page)

L__ L header.hpp

src
L impl.cpp

One typical kind of c++ project is when headers and implementation files are splitted in different folders, if it happens
to be so nxxm will consider the include/ folder to be the publicly installable headers and src the implementation files
constituing the library.

Hint: By default nxxm checks the presence of include/ inc/ src/ sources/ to infer this convention.

4.1.3.2 samedir libs

L— src
header.hpp
impl.cpp

Another typical convention C++ programmer uses are the implementation and headers together at the same level of
directory hierarchy.

Hint: By default nxxm checks the presence of src/ sources/ to infer this convention and the absence of main()
functions in the files.

4.1.3.3 toplevel libs

These are libraries that don’t have any special source folder, their headers are directly rooted at the top of their
repositories.

When this is detected the same mechanism as for samedir libs applies.

Hint: With this kind of structure it might be required to disambiguate nxxm to tell him which directories are really
part of the 1ib thanks to nxxm -s library-diror{ "s" : "library-dir" }.

4.1.3.4 headeronly libs

It is possible to have code which is completely header only while application entrypoints are in .cpp files aside mate-
rializing either lib examples or a corresponding app.

The headers will be put at disposal like in the aforementioned conventions with #include <>.

4.1.3.5 apps

any .cpp file with an entrypoint is an app.

For example any file containing a main() function or a macro instantiating a main() function (e.g. unit testing frame-
works) will be compiled as an application.

12 Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

Hint: apps are always linked to the project library.

Hint: if others .cpp files are aside in the same or deeper filesystem directory they get linked with the applications in
question. Except when those directories are part of the explicitely declared “s”’/-s project library dir.

4.1.3.6 test or examples
Same as apps convention, however the project will register them within the CMake CTest test driver and calling nxxm
——test all will run them all and report result status
This convention kicks-in when files with main() functions in parent folder are named after :
e test
* tests
* example

* examples

4.1.3.7 html

Any .html containing <script type="text/c++"></script> initis compiled as an app convention.

4.1.4 Conventions are not enough

It could happen, please contact us so that we can improve nxxm or help you.

You can also tweak the build as explained below, this is however not recommended and goes against our vision. But
we don’t bite. :)

There is for sure a way for the convention build to work : less is more. Or put differently less CMakeLists is more
time for your C++. (")

4.1.4.1 Override for one directory convention build
This can be useful for really custom test framework or cases, you can give the hand to your CMake skills by adding in
the subdiretories you don’t want nxxm to do conventional builds.

Simply add an empty marker file use-cmake.nxxm and a valid CMakeLists.txt. The build will use CMake for this
subpart.

4.1.4.2 Tweak nxxm convention build

We rely on CMake on you can tweak how we interract with it.

We don’t recommend it but you can tweak fully or partially the build by adding CMakeLists.txt.tpl files in the
main or sub directories of your project.

To generate a sample CMakeLists.txt.tpl with the docs embedded of the different variables at your disposal call nxxm
cmaketpl.

4.1. Builds by Conventions 13

Read the Docs Template Documentation, Release 1.0

4.2 Dependencies Specification

If your project isn’t dependency free then you can consume any GitHub.com repository or CMake Hunter Provided
packages.

This simply can be specified in a . nxxm/deps which can look like this:

{

"gh-user/repo" : {}
"nxxm/gh" s { "e" : "v0.0.1" }
, "platform" : ["Boost::+boost"]

}

This dependency specification (i.e. depspec) file tells which libraries your project needs.
Every key of the JSON object represent a github URI.

* “gh-user/repo”: repository at https://github.com/gh-user/repo

* “nxxm/gh”: repository at https://github.com/nxxm/gh

» “platform” however specifies a commonly consumed package that have been tested and integrated on all the
toolchains supported by nxxm.

The effect of having such a .nxxm/deps file is that on nxxm . call the GitHub.com repositories will be fetched,
compiled by convention and installed within the /build/<platform>/sysroot.

In this specific case :

* “gh-user/repo” default branch (usually master) will be taken and always the latest. Unless nxxm . -nis
passed which relies then only on it’s previously downloaded cache.

* nxxm/gh tag v0.0.1 will be fetched once and always used

¢ Boost headers distribution will be downloaded once and installed to the build thanks to CMake Hunter.

4.2.1 .nxxm/deps syntax

A JSON object whose keys are GitHub URI and values configurations to consume those repositories as C++ libraries
dependencies.

4.2.1.1 gh-user/gh-repo

The following attributes are possible to declare how the dependencies should be consumed.

{

"gh-user/repo" : {
"@" : "<branch/tag/name>"
, "s" : ["<src—-disambiguation>", ...]
, "x" : ["<exclude dir>", ...]
, "@:<target>" : "<branch/tag/name>"
, "s:<target>" : ["<src-disambiguation>", ...]
, "x:<target>" : ["<exclude dir>", ...]
, "requires" : { ... }

(continues on next page)

14 Chapter 4. Contents:

https://github.com/gh-user/repo
https://github.com/nxxm/gh

Read the Docs Template Documentation, Release 1.0

(continued from previous page)

}

"platform[:target-platform]" : ["<dep>::<component>", ...]

Tip: The attributes are optional. They can all be ommitted.

4.2.1.1.1 @ : tag or branch name

* ommited : in this case the default branch is taken is fetched each time for the latest version unless —n is passed
to nxxm.

* atag is fetched only once, then the version is kept.
* a branch name is fetched each time for the latest version unless —n is passed to nxxm.
* You can suffix the key it with the target platform to selectively use a dependency in different platforms.

e.g. "@:wasm-cxx1l7" : "v0.0.1" will select the version v0.0.1 for WebAssembly but not for the native
platforms

4.2.1.1.2 s : source dir disambiguation

If a repository has alot of sources directories with uncommon name they can be added to the list of includes or files to
link with s.

You can suffix the key it with the target platform to selectively include implementation dir by platform

e.g "s:vs-15-2017-win64-cxx17" : ["src/visual-c"] will compile with the src/
visual-c on vs-15-2017 but not on other targets.

4.2.1.1.3 x : directory to completely ignore

Directories that are unneeded to scan. Usually you don’t need to specify this. Note that directories starting with a .dot
will always be ignored.

You can suffix the key it with the target platform to selectively include implementation dir by platform

e.g. "x:wasm-cxx17" : ["src/native-code"] will compile without the native code direc-
tory for the WebAssembly platform.

4.2.1.1.4 requires

The requires is a way to adapt a non nxxm dependency which also has dependencies, there are no limits on the nesting
you can use.

It is also really useful to change a transitive dependency, for example if you prefer to use BoringSSL in place of
OpenSSL for a libary which would depend on OpenSSL.

4.2. Dependencies Specification 15

Read the Docs Template Documentation, Release 1.0

4.2.1.1.5 platform[:target-platform]

Tip: For a list of possible platform libraries please refer to Platform Dependencies Shorthands.

"platform[:target-platform]" : ["<dep>::<component>", ...]

It’s possible to specify dependencies that we consider platform provided. Meaning they are really common and used
accross almost any project, but still needs to be specified.

:target-platform can be appended to selectively include dependencies only on certain target platform, hence
the key name. The target platform is selected after the nxxm -t target-platform parameter.

If thereisaplatformandaplatform: :target both will be used together.
The platform libraries have to be specified as follow :

* “PackageName::+component” if the component is an option of PackageName to be linked but is always shipped
with PackageName (e.g. header only Boost distribution via “Boost::+boost” is always shipped, we need to
declare that we use it.).

* “PackageName::component” if the component is to be linked and needs to be fetched separately. (e.g.
“Boost::filesystem” is not shipped per-se by Boost it must be declared as to install in sysroot first.”).

* “target::native-name” if the component is already installed on such platforms and should be used. (e.g. linkign
to libdl.so on linux can be specified by target: :d1l)

Tip: For a list of possible platform libraries please refer to Platform Dependencies Shorthands.

4.2.1.1.5.1 platform vs GitHub.com

We made the choice to provide the ability to consume well-known C++ libraries via the “platform” library specifica-
tion.

This makes their usage more common and via a single inclusion without needing to search the exact repository on
github.

4.3 GitHub.com Dependencies

Hint: Specify any GitHub.com dependency as Dependencies Specification

Use the awesome Github Search Engine to find your C++ dependencies, there are more than 763 000 repositories.

4.4 Platform Dependencies Shorthands

Hint: Specify the platform spec as in Dependencies Specification

16 Chapter 4. Contents:

https://github.com/search?l=C%2B%2B&o=desc&q=language%3AC%2B%2B&s=stars&type=Repositories

Read the Docs Template Documentation, Release 1.0

We rely on the https://docs.hunter.sh/en/latest/ project for the platform dependencies, you can see the version of the
platform libraries used by default by nxxm in it’s Hunter config.

¢ accelerate:

— accelerate::accelerate

e acf:

— acf acf::act
* aes:

— aes:::aes
* aglet:

— aglet::aglet
AllTheFlopsThreads:
Android-Apk:

android_arm64_v8a_system_image_packer:

Android-ARM64-v8a-System-Image:

android_arm_eabi_v7a_system_image_packer:

Android-ARM-EABI-v7a-System-Image:

android_build_tools_packer:

Android-Build-Tools:

Android-Google- APIs-Intel-x86-Atom-System-Image:

android_google_apis_packer:

Android-Google-APIs:

android_google_repository_packer:

Android-Google-Repository:

android_intel_x86_atom_system_image_packer:

Android-Intel-x86-Atom-System-Image:

android_log:

— android_log::android_log

android_mips_system_image_packer:
Android-MIPS-System-Image:
Android-Modules:

android:

— android: :android

android_sdk_packer:

android_sdk_platform_packer:

Android-SDK-Platform:

android_google_apis_intel_x86_atom_system_image_packer:

4.4.

Platform Dependencies Shorthands

17

https://docs.hunter.sh/en/latest/
https://github.com/nxxm/hunter/blob/nxxm/v0.0.3/cmake/configs/default.cmake

Read the Docs Template Documentation, Release 1.0

¢ android_sdk_platform_tools_packer:
* Android-SDK-Platform-tools:
* Android-SDK:
¢ android_sdk_tools_packer:
* Android-SDK-Tools:
* android_support_repository_packer:
¢ Android-Support-Repository:
¢ AngelScript:
— boo PUBLIC AngelScript::AngelScript
« appkit:
— appkit::appkit
— "—framework AppKit"
« ARM_NEON_2_x86_SSE:
— ARM_NEON_2_x86_SSE::ARM _NEON_2_x86_SSE
e ArrayFire:
— ArrayFire::af
- ArrayFire::afcpu
« assetslibrary:
— assetslibrary::assetslibrary
— "—-framework AssetsLibrary"
e Assimp:
— Assimp::assimp
e Async++:
— Async++::Async++
* audiotoolbox:
— audiotoolbox::audiotoolbox
— "—framework AudioToolbox"
* audiounit:
— audiounit::audiounit
— "—framework AudioUnit"
* autobahn-cpp:
— autobahn-cpp: :autobahn—-cpp
* autoutils:

¢ Avahi:

— Avahi::common Avahi::client Avahi::compat_libdns_sd

¢ avfoundation:

18

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

— avfoundation: :avfoundation

— "—framework AVFoundation"

Beast:
— Beast::Beast
benchmark:
— benchmark: :benchmark
bison:
BoostCompute:
— BoostCompute: :boost_compute
boost-pba:
— boost-pba: :boost—-pba
BoostProcess:
— BoostProcess: :boost_process
Boost:
— Boost::+boost
— Boost::system Boost::filesystem
— Boost: : followed by any Boost Library name.
BoringSSL:
— boo BoringSSL::ssl BoringSSL::crypto
Box2D:
— boo PUBLIC Box2D::Box2D
bullet:
BZip2:
— BZip2::bz2
caffe:
- caffe
CapnProto:
— CapnProto: :capnp
carbon:
— carbon: :carbon
— "—framework Carbon"
c-ares:
— c—ares::cares
Catch:
catkin:

4.4.

Platform Dependencies Shorthands

19

Read the Docs Template Documentation, Release 1.0

* cctz:
* cCv:
- ccv:i:icev
* cereal:
— cereal::cereal
* ceres-solver:
— PRIVATE ceres
* check_ci_tag:
* civetweb:
— boo PUBLIC civetweb::c—library
¢ Clang:
* ClangToolsExtra:
¢ CLAPACK:
* cIBLAS:
e CLI11:
e Comet:
— Comet::comet
¢ convertutf:
— convertutf::convertutf
* coreaudio:
— coreaudio::coreaudio
— "—framework CoreAudio"
* coredata:
— coredata::coredata
— "—-framework CoreData"
* corefoundation:
— corefoundation::corefoundation
— "—-framework CoreFoundation”
¢ coregraphics:
— coregraphics::coregraphics
— "—framework CoreGraphics"
* corelocation:
— corelocation::corelocation
— "—-framework CoreLocation"
¢ coremedia:

— coremedia: :coremedia

20 Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

— "—framework CoreMedia"
coremotion:

— coremotion::coremotion

— "—framework CoreMotion"
corevideo:

— corevideo: :corevideo

— "—framework CoreVideo"
CppNetlib:
CppNetlibUri:

- network-uri
cpp_redis:

— cpp_redis::cpp_redis

cpr:

— cpr::cpr
crashpad:

— ‘“ crashpad::crashpad_client*
crashup:
cre32c:

— crc32c::crc32c
cryptopp:

- cryptopp-static
CsvParserCPlusPlus:

— CsvParserCPlusPlus::csv_parser_cplusplus
ctti:
cub:

— cub::cub
CURL:

— CURL: :1libcurl
cvmatio:

— cvmatio::cvmatio
cvsteer:
CXXopts:
czmgq:
damageproto:
date:
dbus:

4.4.

Platform Dependencies Shorthands 21

Read the Docs Template Documentation, Release 1.0

debug_assert:
— debug_assert_example debug_assert
dest:
— dest::dest
dlib:
dmlc-core:
doctest:
— doctest::doctest
double-conversion:
— double-conversion: :double—-conversion
dri2proto:
dri3proto:
drishti_assets:
drishti_faces:
drishti:
drm:
duktape:
dynalo:
egl:
— egl::egl

eigen3-nnls:

Eigen:

— Eigen::eigen
enet:
EnumGroup:
eos:

— eos::eos
ethash:
Expat:

— ${EXPAT_LIBRARIES}
Fakelt:

— FakelIt::Fakelt
farmhash:

— farmhash farmhash::farmhash
fft2d:

- fft2d fft2d::fft2d

22

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

fixesproto:

flatbuffers:

flatbuffers::flatbuffers

flex:

— main S${FLEX_LIBRARIES}

— main ${BISON_LIBRARIES} ${FLEX_LIBRARIES}
fmt:

- fmt
folly:
forcefeedback:

— forcefeedback: :forcefeedback

— "—framework ForceFeedback"
foundation:

— foundation::foundation

— "—framework Foundation"
freetype:

— freetype::+freetype

frugally-deep:

Fruit:
FunctionalPlus:
gamecontroller:
— gamecontroller: :gamecontroller
— "—-framework GameController"
gauze:
gemmlowp:
— gemmlowp gemmlowp::gemmlowp
geos:
getopt:
gflags:
- gflags
giflib:
- giflib giflib::giflib
glapi:
- glapi::glapi
glbinding:

4.4.

Platform Dependencies Shorthands

23

Read the Docs Template Documentation, Release 1.0

glbinding glbinding::glbinding

gles2:
— gles2::gles2
gles3:
- gles3::gles3
glew:
— boo PUBLIC glew::glew
glfw:
- glfw
glib:
— PkgConfig::glib-2.0
glkit:
— glkit::glkit
- "—framework GLKit"
glm:
— PRIVATE glm
globjects:
— globjects::globjects
glog:
— glog::glog
- glog
glproto:
glslang:
GPUImage:
gRPC:
- gRPC: :grpc
GSL:
— GSL::gsl

gst_plugins_bad:

— PkgConfig::gstreamer-bad-video-1.0

gst_plugins_base:

PkgConfig::gstreamer-video-1.0

gst_plugins_good:

gst_plugins_ugly:

gstreamer:

PkgConfig::gstreamer-1.0

24

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

GTest:

— GTest::+gtest

— GMock: :+gmock_main
gumbo:

— gumbo: :gumbo
h3:
half:

— half::half
harfbuzz:
hdfs:

— hdf5
highwayhash:

— highwayhash highwayhash

http-parser:

GTest::+gtest_main) # GTest::gtest will be linked automatically

: thighwayhash

ice:
ICU:
IF97:

— IF97 IF97::IF97
Igloo:
imageio:

— imageio::imageio

- "—-framework ImageIO"
imgui:
imshow:

— imshow: :imshow
inja:

— inja inja::inja
inputproto:
intltool:
intsizeof:

— PUBLIC intsizeof::intsizeof
iokit:

— iokit::iokit

— "—-framework IOKit"
10s_sim:

4.4.

Platform Dependencies Shorthands

25

Read the Docs Template Documentation, Release 1.0

* ippicv:
e irrXML:
— 1rrXML: :irrXML
* jaegertracing:
* jansson:
* jasper:
* jo_jpeg:
- Jo_jpeg::Jjo_jpeg
* Jpeg:
* jsoncpp:
— Jsoncpp_lib_static
+ JsonSpirit:
- Jjson
* kbproto:
¢ kNet:
— boo PUBLIC kNet::kNet
 LAPACK:
- blas lapack
* lcms:
* Leathers:

* Leptonica:

* leveldb:

— leveldb::leveldb
* LibCDS:

— LibCDS::cds) # Use cds-s for static library
¢ libcpuid:

— boo PUBLIC libcpuid::libcpuid
¢ Libcxxabi:
e Libcxx:

¢ libdaemon:

* libdill:

— 1ibdill libdill::dill
¢ Libevent:

— Libevent::event_core
* libevhtp:
* libffi:

26 Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

— PkgConfig::1ibffi

libjson-rpc-cpp:

libmill:

— 1libmill libmill::mill_s
libogg:
libpcre:

— PkgConfig::libpcre
librtmp:
libscrypt:
libsodium:

— libsodium::libsodium
Libssh2:
libunibreak:
libuv:

— libuv::uv
libxml2:
libyuv:

— PUBLIC libyuv::yuv
LLVMCompilerRT:
LLVM:
Imdb:

— 1lmdb liblmdb::1mdb
Imdbxx:

— Imdbxx: :1mdbxx
logdcplus:

— log4cplus::logdcplus
Lua:
1z4:

— boo PUBLIC 1z4::1z4
Izma:

— lzma::1zma
md5:

— boo PUBLIC mdb5::md5
metal:

— metal::metal

"-framework Metal"

4.4.

Platform Dependencies Shorthands

27

Read the Docs Template Documentation, Release 1.0

Microsoft.* GSL: * mini_chromium: * minizip:

minizip::minizip
mng:
mobilecoreservices:
— mobilecoreservices::mobilecoreservices
— "—-framework MobileCoreServices"
mojoshader:
— boo PUBLIC mojoshader::mojoshader
mongoose:
— mongoose mongoose: :mongoose
mpark_variant:
msgpack:
— msgpack: :msgpack
mtplz:
MySQL-client:
— "MySQL::libmysgl"
— "MySQL::client"
nanoflann:
NASM:
ncnn:
nlohmann_json:
— nlohmann_json: :+nlohmann_json
nsync:
— nsync::nsync
odb-boost:
odb-compiler:
odb-mysql:
odb-pgsql:
— odb: :pgsqgl
odb:
odb-sqlite:
ogles_gpgpu:
— ogles_gpgpu: :ogles_gpgpu
oniguruma:
onmt:

OpenAL:

28

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

— OpenAL: : +OpenAL

OpenBLAS:

— OpenBLAS: :OpenBLAS
OpenCL-cpp:

— PRIVATE OpenCL-cpp: :0penCL-cpp
OpenCL:

— PRIVATE OpenCL: :0OpenCL
OpenCV-Extra:
OpenCV:

— PRIVATE ${OpenCV_LIBS}
openddlparser:

— openddlparser: :openddl_parser
opengles:

— opengles::opengles

— "—framework OpenGLES"
OpenNMTTokenizer:
OpenSSL:

— OpenSSL: :+SSL OpenSSL::+Crypto
opentracing-cpp:

— OpenTracing: :opentracing

— OpenTracing: :opentracing-static
osmesa:

— osmesa::osmesa
peg:
pciaccess:
PhysUnits:
PNG:
PocoCpp:

— Poco::Foundation
poly2tri:

— poly2tri::poly2tri
polyclipping:

— polyclipping: :polyclipping
PostgreSQL:

— PostgreSQL::1libpg

presentproto:

4.4.

Platform Dependencies Shorthands

29

Read the Docs Template Documentation, Release 1.0

PROJ4:
protobuf-c:
Protobuf:
— protobuf::libprotobuf
pthread-stubs:
pugixml:
— boo PUBLIC pugixml
pybind11:
- pybindll::pybindll pybindll
QtAndroidCMake:
QtCMakeExtra:
QtQmIManager:
Qt:
quartzcore:
— quartzcore::quartzcore
— "—framework QuartzCore"
rabbitmq-c:
— rabbitmg-c::rabbitmg-static
rabit:
randrproto:
range-v3:
RapidJSON:
— RapidJSON: :rapidjson
RapidXML:
— RapidXML: :RapidXML
re2:
— RE2::re2
recastnavigation:
renderproto:
rocksdb:
ros_comm_msgs:
ros_common_msgs:
ros_console_bridge:
roscpp_core:

ros_environment:

:tembed pybindll:

:module

30

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

ros_gencpp:
ros_geneus:

ros_genlisp:

ros_genmsg:
ros_gennode;js:
ros_genpy:
ros_message_generation:
ros_message_runtime:
rospack:

roS:

ros_std_msgs:

SDL.2:

— SDL2::SDL2
SDL_image:

— main
SDL_mixer:

— SDIL_mixer::SDL_mixer
SDL_ttf:

— SDL_ttf::SDL_ttf
sds:

— sds::sds
sm:
Snappy:
Sober:

sources_for_android_sdk_packer:

Sources-for-Android-SDK:

sparsehash:
spdlog:

— spdlog: :spdlog
sqlite3:
sse2neon:

— ssezZneon::sse2neon
stanhull:

— boo PUBLIC stanhull::stanhull

state_machine:

— ‘‘“ sm state_machine‘*

4.4.

Platform Dependencies Shorthands

31

Read the Docs Template Documentation, Release 1.0

stb:
— boo PUBLIC stb::stb

stdext-path:

stormlib:

— stormlib::stormlib
sugar:
SuiteSparse:

— SuiteSparse::cholmod
szip:

- szip::szip
tacopie:

— tacopie::tacopie
tclap:
tcl:
Tesseract:
thread-pool-cpp:
— thread-pool-cpp::thread-pool-cpp
thrift:
— PUBLIC
TIFF:
— TIFF::1ibtiff
tinydir:
— tinydir::tinydir
tinyxml?2:
toluapp:
tomerypt:
tommath:
type_safe:
— type_safe_example type_safe
uikit:
— uikit::uikit
- "—-framework UIKit"
Urho3D:
— boo PUBLIC Urho3D::Urho3D
util_linux:

32

Chapter 4. Contents:

Read the Docs Template Documentation, Release 1.0

vorbis:
VulkanMemoryAllocator:
Washer:
WDC:

— WDC::1libwdc
WebKit:
WebP:
websocketpp:

— websocketpp: :websocketpp

WinSparkle:
WTL:

— WTL::WTL
wxWidgets:

- ${wxWidgets_LIBRARIES}
x11:
x264:
xau:
xcb-proto:
xcb:

Xcursor:

xdamage:
xextproto:

Xxext:
xf86vidmodeproto:
xfixes:

xgboost:

- xgboost: :xgboost
xineramaproto:
Xinerama:

Xi:
XOrg-macros:
Xproto:
xrandr:
xrender:
xshmfence:

Xxtrans:

4.4.

Platform Dependencies Shorthands

33

Read the Docs Template Documentation, Release 1.0

o xxf86vm:
e yaml-cpp:
— yaml-cpp: :yaml—-cpp
e ZeroMQ:
— ““ZeroMQ::libzmq) “*
* ZLIB:
- ZLIB::zlib
« ZMQPP:
— ZMQPP: : zmgpp
* zookeeper:
— zookeeper: :zookeeper_mt

— # zookeeper::zookeeper_st) # if you want the single-threaded 1lib
instead

4.5 Upgrade your users

Test it live: https://github.com/nxxm/example-upgrd-app

4.5.1 Installing upgrd

nxxm keeps your deployments up-to-date for you, add upgrd to .nxxm/deps:

{
"nxxm/upgrd" : { "@" : "v0.0.3" }

}

Add to your app main function the following:

#include <upgrd/upgrd.hxx>
int main(int argc, charxx argv) {

// Download Releases out of GitHub Release Page Assets
upgrd: :manager up{
"github-account",
"your-github-repo",
"v0.0.1",
argc,
argv,
std: :cout
}i
up.propose_upgrade_when_needed () ;

return 0O;

Relies on GitHub Releases to distribute always the newest version to your users.

34 Chapter 4. Contents:

https://github.com/nxxm/example-upgrd-app

Read the Docs Template Documentation, Release 1.0

4.5.2 Publishing Releases

Look at an example: https://github.com/nxxm/example-upgrd-app/releases

e Add a zip file with your binary to a GitHub Release. Simply add in the zip name respective to each platform : *
windows * linux * macOS

e Add a SHAl sum in the body of the release for each archive : archive-
name.zip:SHA I XX

4.6 Passing -D defines

Pass them simply via nxxm . -DSOME_OPTION=1 -DOTHER_OPTION=OK.

Hint: The defines will transitively be passed to all your dependencies build as well.

4.7 Compile options

We rely on the CMake project. nxxm abstracts it away, but you might need to tweak the compilation flags.

We encourage you to put all your compile options within your target toolchain files. We deliver many target toolchain
files pre-configured. You can also add your own in . nxxxm/<distro>/polly/.

Nevertheless if you add compile options, they will be used for all projects in the build tree as we add them in the
context of the current project to the sysroot toolchain file.

4.7.1 .nxxm/opts[.target-platform]

If the file is named .nxxm/opts it is always used, to that if their are . nxxm.target-platform file the options
are used only in the case the platfom is selected via nxxm . -t target-platform itis cumulative to the the
main opts.

The opts file have to contain valid CMake Syntax. For example to pass #defines or compile options this way simply
add:

add_compile_options (—-fmath-errno -Wextra)
add_compile_definitions (DEFINE_TO_PASS_WITHOUT_D_BEFORE=1)

4.8 GitHub.com & Github Enterprise Authentication

4.8.1 Create a .nxxm/.auth file

Hint: On Windows it’s in C:\.nxxm\ auth

Hint: On other platforms in ${ HOME}/.nxxm/.auth

4.6. Passing -D defines 35

https://github.com/nxxm/example-upgrd-app/releases

Read the Docs Template Documentation, Release 1.0

If you have modified the environment variable ($env:NXXM_HOME_DIR), the authentication token must be in the
SNXXM_HOME_DIR/.nxxm/.auth .

The file is a JSON Array of credentials to setup on one entry GitHub.com credentials and on mutliple for Github
Enterprise :

[

"auth_info" : {
"user" : "<GitHub.com username>",
"pass" : "<GitHub.com password or Personal Access Token (if you have 2FA on)>"
}
I
"endpoint" : "https://github.your-enterprise.com",
"auth_info" : {
"user" : "<username>",
"pass" : "<GitHub.com password or Personal Access Token (if you have 2FA on)>"

}

To create a personal access token, please refer to the ‘GitHub documentation <https://help.github.com/articles/
creating-a-personal-access-token-for-the-command-line/> _ .

4.9 Continous integration with GitHub actions

With nxxm ci you can generate a workflow that will build and test your project in github actions.

4.9.1 Create a Github secret

In order for nxxm to be able to pull from your private Github repositories, it needs the credentials you created for
authentication.

After creating it you can copy its content and paste it in a Github secret with the name of NXXM_AUTH.

36 Chapter 4. Contents:

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
07-authentication.rst
https://docs.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets

Read the Docs Template Documentation, Release 1.0

Options Secrets / New secret
Manage access
Name
Security & analysis NXXM AUTH
Branches
Value
Webhooks
- [
Notifications {
- "auth_info" : {
Integrations .
"user” : "<GitHub.com username=",
Deploy keys "pass” : "<GitHub.com password or Personal Access Token (if you have 2FA on)>"
}
Secrets h
) {
Actions "endpoint” : "https://github.your-enterprise.com”,

}
}

4.10 Environment variables

4.10.1 NXXM_HOME_DIR (dependencies & tools cache)

When using nxxm for the first time, the software will create a new directory .nxxm
* On Windows it’s in C:\.nxxm\
* On other platforms in ${ HOME}/.nxxm/
In this directory nxxm will install dependencies, toolchain files and tools for your environments.
But you may not have permission to write to this part of the disk. Or that you run nxxm from another disk.

To solve this problem you can tell nxxm to install it’s tools and dependencies at the location pointed by :
NXXM_HOME_DIR.

For example on windows powershell you can specify $env:NXXM_HOME_DIR = “D\a\nxxm”

4.10.2 NXXM_DISTRO_JSON

nxxm uses a json file which contains the required tools used by nxxm to build projects, as cmake or make. These tools
are automatically downloaded and installed by nxxm at runtime before running projects build.

To allow nxxm usage flexibility, nxxm is ready to use the environment variable NXXM_DISTRO_JSON which may
point to an absolute or relative file path, or even an HTTP(s) url which point to your own distribution json file.

The original json file can be found at https://github.com/nxxm/distro/blob/master/v0.0.12/distro.json.

4.10. Environment variables 37

https://github.com/nxxm/distro/blob/master/v0.0.12/distro.json

Read the Docs Template Documentation, Release 1.0

Below some examples of what you can set as NXXM_DISTRO_JSON:
e NXXM_DISTRO_JSON = “~/projects/nxxm/distro.json”
* NXXM_DISTRO_JSON = “/home/user/projects/nxxm/distro.json”
* NXXM_DISTRO_JSON = “https://company.com/nxxm/distro.json”
If NXXM_DISTRO_JSON contains an absolute or relative file path, it will be used directly by nxxm.

If NXXM_DISTRO_JSON contains an HTTP(s) url, nxxm will handle the file download and the environment variable
NXXM_DISTRO_JSON_SHA has to be defined too (see NXXM_DISTRO_JSON_SHAI).

4.10.3 NXXM_DISTRO_JSON_SHA1

As nxxm handles the environment variable NXXM_DISTRO_JSON, if it contains an HTTP(s) url, nxxm will check the
SHAT1 got from the environment variable NXXM_DISTRO_JSON_SHAI to know if it needs to download and override
the existing json file.

For example:
e NXXM_DISTRO_JSON = “https://company/nxxm/distro.json”
e NXXM_DISTRO_JSON_SHA1 = “4eb777d088ea949709e¢9e¢a97bbc8c389a63856e2”

38 Chapter 4. Contents:

https://company.com/nxxm/distro.json
https://company/nxxm/distro.json

	Getting started
	nxxm features
	nxxm key principles
	Relaxing & flowing C++
	Every project is a library
	Don’t pay for what you don’t use
	Opinionated but compromise-ready

	Contents:
	Builds by Conventions
	Why ?
	Because

	Convention by example
	Conventions Types
	splitted libs
	samedir libs
	toplevel libs
	headeronly libs
	apps
	test or examples
	html

	Conventions are not enough
	Override for one directory convention build
	Tweak nxxm convention build

	Dependencies Specification
	.nxxm/deps syntax
	gh-user/gh-repo
	@ : tag or branch name
	s : source dir disambiguation
	x : directory to completely ignore
	requires
	platform[:target-platform]
	platform vs GitHub.com

	GitHub.com Dependencies
	Platform Dependencies Shorthands
	Upgrade your users
	Installing upgrd
	Publishing Releases

	Passing -D defines
	Compile options
	.nxxm/opts[.target-platform]

	GitHub.com & Github Enterprise Authentication
	Create a .nxxm/.auth file

	Continous integration with GitHub actions
	Create a Github secret

	Environment variables
	NXXM_HOME_DIR (dependencies & tools cache)
	NXXM_DISTRO_JSON
	NXXM_DISTRO_JSON_SHA1

